If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-14=0
a = 11; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·11·(-14)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{154}}{2*11}=\frac{0-2\sqrt{154}}{22} =-\frac{2\sqrt{154}}{22} =-\frac{\sqrt{154}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{154}}{2*11}=\frac{0+2\sqrt{154}}{22} =\frac{2\sqrt{154}}{22} =\frac{\sqrt{154}}{11} $
| 78x-160=-x^2 | | 2x(x-66)=560 | | 47+46x=x^2 | | 0.5x+3=3x-17 | | x/2-x/4=x-9 | | 0;5x^2+12x=56 | | 0,5x(x+24)=56 | | t÷3-5=-6 | | 2x/4/2=16x | | 5+6y=23 | | 0.5(4x+6)=x-5 | | m/21=5 | | m/18=5 | | 7r-13/7=5 | | m/12=5 | | 19=-2.5s | | x-3+4x=32 | | 17=-a1.8 | | 10n=4.5 | | 206u=618 | | 2m+10=21 | | 3n+0.6n=3.6 | | -38=-0.4b | | -6x+3=x-4 | | 2-3x=-6x-16 | | y-3=125 | | 4x-28=x+17 | | -5x-10=4x-1 | | -3x+15=2x+5 | | 15x+60+x=68 | | 4x+3=6x+2-x | | 2x+5=5x+5+12 |